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Interplay of charge, spin and orbital degree of freedom 

 ̧Superconductivity 

 ̧Colossal magnetoresistance (CMR) 

 ̧Charge and orbital ordering 

 ̧Non-Fermi liquid 

zx xy yz 

3z2-r2 x2-y2 

3d orbital  

charge 

Spin Orbital 

charge 

Spin Orbital 

Role of orbital degree of freedom 

on versatile phase 
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Orbital degrees of freedom in perovskites: pseudospins 

In t2g systems (d1,d2) two active 

flavors, e.g. yz and zx along c axis ï 

are described by quantum operators:  
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Ising-like operators for eg systems (d9) with 3z2-r2 and x2-y2: 
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Interactions have cubic symmetry 

Orbital quantum numbers are not conserved ! 

For two active orbitals along g: 
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Frustration of orbital interactions: orbital liquids 
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frustrated  

triangular lattice 

order out of  

disorder 

square lattice: 

no frustration 

Cubic symmetry of the orbital interactions: 

SU(2) symmetry for spins: 

Interaction depends on bond direction  =>   frustration 

(2) FM metallic manganites: 3D orbital liquid  (generated by frustration) 
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[L.F. Feiner, AMO, PRB 71, 144422 (05)] 

(1) Orbital order triggers a spin liquid [L.F. Feiner, AMO, J. Zaanen,  

PRL 78, 2799 (97)] 

(3) Example of 2D spin-orbital liquid: triangular lattice 

explains spin excitations 

[B. Normand, AMO, PRB 78, 094427 (08); J. Chaloupka, AMO, PRB 83, 214408 (11)] 
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Complementary behavior of spins and orbitals 

Review of this field: 

Focus on Orbital Physics 

New Journal of Physics 

2004-2005 

http://www.njp.org 

LaVO3 

t2g orbitals 

LaMnO3 

eg orbitals 

C-AF A-AF 
Goodenough-Kanamori rules: 

AO order supports FM spin order 

FO order supports AF spin order 

Are these rules sufficient? 

AF phases with some FM bonds 
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Toward superexchange model: hybridization and d-d hopping t 

hopping t via  

oxygen 

3d-2p-3d 

=> 

bandwidth W 

eg orbitals t2g orbitals 
strong                          weak 

              JT coupling 

[J. Zaanen and AMO, PRB 48, 7197 (1993)] 
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Coulomb interactions in Mott insulators ( t<<U ) 

[A.M. OleŜ, PRB 28, 327 (1983)] 
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Two parameters: U ï intraorbital Coulomb interaction, JH ï Hundôs exchange 

single parameter:  

ɖ=JH /U 

In a Mott insulator (t<<U) 

superexchange follows 

from charge excitations 



ARW, Hvar 2011 9 

Low energy Hamiltonian: Spin-orbital superexchange (t<<U) 

Spin-orbital superexchange model at orbital degeneracy (ɔ=a,b,c  - cubic axes) 

contains orbital operators                             of  cubic symmetry 

By averaging over orbital (dis)ordered state one finds effective spin model: 
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Here spin and orbital operators are disentangled 
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Spin AF Heisenberg model for one orbital (e.g. in high-Tc, t-J model, J=4t2/U): 
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Spin interactions have SU(2) symmetry 

FM superexchange bonds are also possible (as in A-AF and C-AF phases) 

[AMO, G. Khaliullin, P. Horsch, L.F. Feiner, PRB 72, 214431 (05)] 
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Spin-Orbital Model for RVO3  (R=La,Y, é) 

t2g
2 configurations of V3+ ions with S =1 spins 

each orbital is inactive along one axis 

A.B. Harris et al., 

PRL 91, 087206 (03) 

t2g hopping 

For T<Ts  xy orbitals are occupied: 

Superexchange for t<<U (at JH=0): 

Energies of t2g orbitals in YVO3 

[G. Khaliullin, P. Horsch, AMO, PRL 86, 3879 (01)] 
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[P. Tomczak, conference talk, Cracow, 2008] 

http://confer.uj.edu.pl/hfm/ 

Entanglement in Spin&Orbital Systems, Cracow, 2008 
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[AMO, P. Horsch, L.F. Feiner, G. Khaliullin, PRL 96, 147205 (06)] 

Spin-orbital entanglement in t2g ( d1 & d2 ) cubic models 

d1  

d
2 

In the shaded regions  

Jij    is negative        FM 

Sij  is negative        AF 

Tij  is negative        AO 

=> GK rules are violated 

)(g
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Definition of Jij is meaningless  

<=> spin-orbital entanglement 

If Cij<0, spin-orbital states are entangled 

   Sij ï spin correlations 

   Tij  ï orbital correlations 

³ Cij ï spin-orbital correlations 

ɖ=JH /U 

S=1/2 

S=1 
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Optical sum rules follow from superexchange (t<<U) 

Spin-orbital superexchange model for a perovskite, ɔ=a,b,c  (J=4t2/U): 

contains orbital operators: 

Kinetic energy determined by charge excitation n along ɔ=a,b,c : 

Superexchange determines partial optical sum rule for individual band n: 
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[G. Khaliullin, P. Horsch, AMO, PRB 70, 195103 (04)] 
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Each multiplet level n represents an upper Hubbard subband 

Can spin and orbital operators be disentangled ? 
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Example 1: Optical spectral weights for LaVO3 (C-AF) 

mean-field approach fails: orbital and spin-orbital dynamics 

[G. Khaliullin, P. Horsch, and AMO, PRB 70, 195103 (04)] 

spin-orbital entanglement crucial at T>0! 

weak orbital order unlike in LaMnO3 
Data: S. Miyasaka et al., 

 [ JPSJ 71, 2086 (2002)] 
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Example 2: Orbital and Magnetic Transition in RVO3 

[J. Fujioka et al. PRB 82, 144425 (2010)] 

Characteristic features: 

(1) G-type OO and C-AF coexist; 

(2) G-AO occurs first below  TOO  

(3) C-AF occurs next below TSO (TN1) 
   In addition, two magnetic phases, 

  G-AF and C-AF, for small rR (YVO3) 

Problem in the theory: 

Understanding the phase diagram  

of the RVO3 perovskites using the  

microscopic spin-orbital model 

G-AF phase C-AF phase 
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Spin-Orbital-Lattice Coupling in RVO3 

Model includes: 

(1) spin-orbital superexchange for S=1 spins and t =1/2 pseudospins; 

(2) crystal field Ez induced by GdFeO3 distortions 

      -- it supports C-type OO with wavevector  

(3) Jahn-Teller interaction Vab for the bonds in ab planes; 

(4) cooperative interaction ||c axis: TOO=TN1 at Vc=0.26J (in LaVO3); 
(5) orbital-lattice coupling term Hu 

Parameters: J, Ez, Vab and g (in Hu) 

Have to determine self-consistently singlet correlations 

ɖ=JH /U=0.13 Hundôs exchange is fixed 



ARW, Hvar 2011 17 

Orbital-lattice interaction  Hu 

Interaction with the lattice favors orbital polarization  

in eigenstates: 

Orbital-lattice interaction: 

This term competes with orbital order  

Orbital-lattice and orbital-orbital 

interactions vary with lattice distortion 

[Eva Pavarini et al., New J. Phys. 7, 188 (2005)] 

Lattice distortion: 

Distortions of VO6 given by  

              V-O-V bond angle 

              rotation angle wrt c axis 
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Entanglement => bond  <ij>  along c axis 

Quantities determined self-consistently together with <Sz> and <t z>: 

A bond <ij>|| c axis with MF terms due to its neighbors is solved 

(Bethe-Peierls-Weiss approximation, MF fails) 

Large singlet correlations; in the limit of the  

1D orbital chain at T=0 exact (Bethe, 1930): 

a 

b 

c 

zx 

yz 

C - AF / G - AO 

- <Sz> 

- <t z> 

- <Sz> 

+<t z> 
TN1   is given by <Sz>=0 

TOO  is given by <t z>=0 

(LaVO3) 

Below TN1 (TOO):  <Sz> (<t z>) are finite   


